Estimating Examinee Intrinsic Difficulty for Providing Greater Specificity of Feedback for Instruction

Charles Secolsky Bruce Kossar Eric Magaram
Venancio L. Fuentes
County College of Morris Independent Consultant, NJ SUNY Rockland Community College
csecolsky@ccm.edu bruce@brubumski.com emagaram@sunyrockland.edu

Abstract: Intrinsic difficulties as opposed to proportion correct scores reflect judgments of what students perceive as difficult. By estimating intrinsic difficulties of items, instructors can gain a greater sense of student misconceptions of content and provide more appropriately focused instruction. Initially, think-aloud protocols established judgment categories (or solution strategies) for twenty basic fraction and decimal problems. A larger scale administration to 238 high school students in general math classes yielded a one-factor solution for the actual correct or incorrect responses to the 20 items and a four-factor solution for the judgments using exploratory principal components factor analyses. BILOG was used to estimate the parameters of the 20 items using a 2 PL model while TESTFACT was used to estimate a compensatory multi-dimensional IRT (MIRT) model of the eighty judgments (4 per item) for which only the slopes of the first dimension was plotted along with item response functions of the actual 20 items. Findings indicate that both factor-analytic results and an illustrative example of an IRT and MIRT plot for the misconception of incorrectly cross-multiplying with fraction multiplication identifies specific intrinsic difficulties where instruction can be strengthened. The procedure could have great relevance for students of diverse cultural/ linguistic backgrounds.

Key Terms: Intrinsic Difficulty, Student Misconceptions, Developmental Mathematics Instruction

There is and perhaps there always has been a need to improve instruction in many parts of the world. Deficits in student achievement seem to be growing even in light of increases in demand for accountability and in attempts to find solutions to the problems in education. Presently, it appears that the blame in a number of countries including the United States now rests with the lack of adequate instruction. At other times in the not too distant past, poverty, socioeconomic status, race, and the weakness of the family unit have been and continue to be foci of concerns for underachievers. Today, it is mostly the classroom. The present paper represents research that if properly developed and implemented, may be useful in mitigating the problem inside the classroom and outward to the larger community. It is an approach which spends more time on assessing what students know and using that increased knowledge of assessment to aid instruction, particularly where traditional instructional methods have been deemed by existing standards to be failing. This resulting data can support and inspire educators as they rethink and redesign traditional instructional methods.

This proposed approach requires the introduction of a relatively new concept known as intrinsic difficulty. Sweller (2010) and elsewhere describes intrinsic difficulty in terms of a theory of cognitive load and it is defined as the germane part of a task that if perceived by the student will probably lead to a correct solution. From a psychometric application of Sweller's theory, the notion of intrinsic item difficulty is proposed for assessing student abilities for potential use by providing more focus and specificity of feedback for enhancing the quality of instruction. Put another way, if we know how students perceive the tasks (in this case test items or knowledge demands), instructors can incorporate this new assessment information into their instruction.

The research spelled out here is based on the premise that the basic mathematics curriculum can change to become more diagnostic. If basic mathematics items can be decomposed with respect to intrinsic difficulty as perceived by students, and if common misconceptions from these perceptions can be identified on a large scale, then curricula can be put into place that may be more useful for instructors who would then be in a better position for remediating students who are experiencing learning difficulties in basic mathematics courses. When piloted with developmental community college students, it was reported that students were more engaged in the assessment. In fact, they appeared to have liked the experience of providing judgments along with providing attempts at solving each of the problems.

While the perceptions of intrinsic difficulty of mathematics items obtained on a large scale may not vary as some would think, recent thought given to this issue suggests that there are apt to be different cultural contexts that would make cultural differences for how data on the assessment of intrinsic difficulties of items are both derived and distributed. (See Henrich, Heine \& Norenzayan, 2010 for a discussion of how western culture science may produce experimental psychological results that are different from most other parts of the world.) For purposes of the present investigation, a relatively homogeneous population was used. The population consisted of 238 general high school mathematics students in grades 10-12 from the same high school in the northwest part of the state of New Jersey in the United States.

Psychometric Foundation of the Problem:

Item difficulty in classical test theory (CTT) is defined as the proportion of examinees responding correctly to a test item. Item difficulty, the "b" parameter in item response theory (IRT), is estimated using an iterative maximum likelihood method that starts with the proportion correct score. Customarily, both CTT and IRT are not sensitive to the many different ways that examinees find items difficult. Therefore, when test score interpretations are validated, interpretations rely only on some form of correctness or incorrectness based on responses to the actual items. To get around this problem, other evidence is needed in the form of examinee judgments of intrinsic difficulty.

Judgments of the intrinsic difficulty of test items or the different ways in which examinees find items difficult can lead to more valid test score interpretations than is currently offered by traditional CTT or IRT. For test developers and educators, more could potentially be determined
regarding examinee response processes. Response processes represent one area that is in the realm of validation according to the Standards for Educational and Psychological Testing (AERA, APA, NCME, 1999). As such, this paper is an analysis of the combination of test scores and intrinsic examinee judgments of item difficulty in an attempt to build more sound interpretations of test scores and greater utility for the interpretations (Scriven, 1997).

Method: Earlier this year, 22 developmental community college students were administered think-aloud protocols, a method developed by Ericsson and Simon (1993), for 20 different fraction and decimal items. From these tape recorded sessions, the underlying solution strategies of the students were obtained. The transcribed strategies included common student misconceptions on how not to solve these arithmetic problems. The solution strategies were converted into four different intrinsic difficulty categories for each of the 20 items. The interviews with the students took place in a classroom at Rockland Community College during the meeting time of each of the classes. The only instructions students were given were to solve the problems out loud and to continue talking. But, first they received a sample problem from a facilitator who demonstrated how the students were expected to respond. The following example of two questions of what the students were asked to solve in the interview they had, and their thought processes are shown below.

Find percent notation for $\mathbf{0 . 3 7 2}$. Student: Find the percent notation for 0.372 . Move the decimal place over 1, 2, 1, 2. I guess I move it over 2 places. That's 37, I think it is just 37%; you get rid of the 2 .

Multiply and simplify $\frac{\mathbf{2}}{5} \times 35$. Student: Multiply and simplify $\frac{2}{5} \times 35$. Uh, you make the 35 a fraction, I think and then you cross multiply. So, no you don't. Oh no, you got to make uh...

Student: Yes, you cross multiply. I have to cross multiplying, $35 \times 5,5 \times 5=25$ and 2 up top $5 \times 3=15$ and then the 2 up top is 17 , so that is 175 . I think its 175 and 2×175 is. 175×2 2×5 is 10 , bring the 1 up, 2×7 is 14,15 bring the 5 down, 1 up, $2 \mathrm{x},+1$ is 3 the answer is 350

The responses to the actual open-ended items scored correct or incorrect were collected along with the intrinsic difficulty judgments from 62 community college students. Students attempted to solve the problems and then indicated their intrinsic difficulty judgments in the form of the different solution strategies for each item. Together, both data forms represented 100 data elements for each examinee: 20 actual item scores and 80 intrinsic difficulty judgments. An exploratory factor analysis for the 80 judgments provided considerably greater specificity into the types, composition and interpretation of the resulting factors, especially in the identification of common examinee misconceptions.

If students in high schools become more deficient in basic skills, especially in mathematics, they will create even greater problems for an educated society. Community colleges may have to work even harder to bring student skill levels up to a point where students can become
successful. For this reason, the researchers became involved with a high school and had all students in general math courses in grades 10-12 take the two assessment forms (the actual 20 item test and the 80 judgments form). Two hundred and thirty-eight students took both assessments with the goal of improving the understanding of the internal structure of the responses and ultimately the test score interpretations of the results of the fraction and decimal problems.

Analyses: An exploratory principal components factor analysis with a VARIMAX rotation was performed on the actual correct-incorrect responses and a scree plot of the differences in eigenvalues resulted in a one factor solution. The factor solution was then interpreted. Afterwards, IRT ability, difficulty, and discrimination estimates for the regular testing were computed using a 2PL model. An exploratory principal components factor analysis was again performed with a VARIMAX rotation on the judgments (solution strategies) to determine the number of factors on which the judgments loaded and the judgments comprising each factor. The correlation matrix on which the factor analysis was performed consisted of dichotomous data. The judgments turned out to be a multi-dimensional four factor solution. Following, a MIRT analysis of the data was performed to uncover the traits measured by the judgments for each item. However, since the TESTFACT program did not converge after 56 cycles, goodness of fit-statistics were not computed. Figures 1 and 2 show the scree plots for the actual item responses and judgments.

Figure 1: One-Factor Solution of Item Scores

Figure 2: Four Factor Solution of Judgment Scores

Each item represented a separate variable and so did each judgment. The relationship between items and their judgments is of critical importance as the goal of the research was to bring a diagnostic focus to what was making each item difficult. The results of the factor analysis while containing the numbers of factors for both the actual test items and the judgments, respectively yielded greater specificity and meaning for the interpretation of the factors and loadings that were obtained.

Connections of Findings and Research Question: Item difficulty is defined here in two distinct ways. One way is from the traditional IRT difficulty estimates. Another way of viewing item difficulty is what is difficult from the perspective of the larger modal group of students. The stimuli manifested by the items are the same. But, for the traditional IRT estimates of difficulty, the focus is and previously always has been on getting the answer to the item correct. For examinees, judgments or solution strategies of the difficulty of the items, it is what in each item constitutes the most difficult parts. It is the decomposition of the features of the items that is sorely needed so that the roots of the difficulties with the basic skills mathematics items can be better understood as they exist in the minds of students. The result could potentially provide mathematics instructors with faculty development opportunities for improving upon present diagnostic methods of instruction. It is believed that with this greater understanding by faculty, there will be greater retention rates and ultimately greater success rates for developmental students.

Results: Table 1 presents the results of the factor analysis for the actual 20 items using the onefactor solution. Table 2 presents the results for the factor analysis of the 80 judgments using the four-factor solution. The interpretations of these analyses follow the tables.

Table 1: One- Factor Solution for the 20 actual items.

Item	Loading	g Actual Item	Key
Q8	0.699	Subtract and simplify. 7/10-13/25	FSS
Q10	0.629	Add. $81 / 9+72 / 5$	FA
Q9	0.622	Add - write as mixed numeral. $65 / 6+25 / 6$	FAMn
Q11	0.615 S	Subtract. $92 / 5-51 / 3$	FS
Q2	0.590	Multiply and simplify. $2 / 5$ * 35	FMS
Q7	0.576	Add and simplify. $7 / 9+5 / 6$	FAS
Q5	0.545	Divide and simplify. $7 / 4 \div 7$	FDS
Q6	0.533	Add and simplify. $7 / 8+7 / 8$	FAS
Q12	0.433	Subtract - write as mixed numeral. $27-221 / 2$	FSMn
Q1	0.373	Simplify. 9/15	FS
Q4	0.339	Divide and simplify. 7/2 $\div 49 / 4$	FDS
Q19	0.306	Find percent notation for 0.372	Pct
Q17	0.297	Find decimal notation. 4/15	Dec
Q20	0.279	Find percent notation. 5/8	Pct
Q3	0.270	Multiply and simplify. 3/10 * 43/100	FMS
Q16	0.174	Round to the nearest tenth. 7.8493	Dec
Q18	0.151	Calculate 1/4*1224	FM
Q14	0.100	Divide - write as mixed numeral. $12 \div 11 / 13$	FDMn
Q15	0.000	Divide. $71 / 6 \div 16 / 7$	FD
Q13	-0.088	Multiply. 17 4/7*1/4	FM

The items that loaded highest in the one-factor solution had mostly to do with addition and subtraction of fractions, particularly with mixed numbers (Q8-Q12). Other items with relatively high loadings had to do with simplifying. However, the factor solution does not identify what about these problems were intrinsically difficult for examinees and what represented students' misconceptions on how to solve these problems. From the four factor solution of the judgments, it can readily be seen that Wrong choices for solution strategies, particularly for Factors 2-4, represent different sets of information that link to the judgments form students completed. For example, the judgments for Factor 2 that loaded the highest were for the Wrong strategy (d) for Q18 and the Wrong strategy (a) for Q3. The strategy for Q18 was "I should have cross multiplied 1224 by 4 ." The strategy for 3 a was "I'm going to cross multiply and get 430 over 300." Clearly, a common misconception was cross multiplying when multiplying fractions across was the Correct solution. Yet, the loadings for items Q18 and Q3 in the one factor solution for the actual items were relatively low, 0.151 for Q18 and 0.270 for Q 3 , respectively. This indicates at least to some extent that Q18 and Q3 while not well defined as part of the
solution for the actual items, did define Factor 2 and generally extracted more common variance using the judgment data thereby uncovering patterns of examinee intrinsic difficulties.

The three highest factor loadings for Factor 3 of the judgment data were for Q14b, Q7b, and Q8b. The strategies were "First, I find the lowest common denominator by multiplying 9×6 $=54$ ", "I'm not sure what a mixed numeral is", and "I have to find the lowest common denominator which is 250 ." Clearly, a common misconception is to multiply denominators to find the lowest common denominator.

IRFs are produced for Q18 using the 2PL model and for the family of curves comprising the judgment data for this item from the first dimension of compensatory MIRT output. These plots are superimposed for Question 18 for illustrative purposes in Figure 3.

Table 2: Four-Factor Solution for Judgment Data with Key:

Rotated Factor Pattern	Factor1	Factor2	Factor3	Factor4	New Variables
C04b-FDS -7	0.605	-0.115	-0.123	-0.021	J4b
C05c-FDS -6	0.492	0.056	-0.186	-0.097	J5c
C08a-FSS -4	0.480	-0.217	-0.186	0.391	J8a
W17c-FDec-0	0.456	0.020	0.228	0.195	J17c
C07c-FAS -4	0.454	-0.099	-0.244	-0.006	J7c
C16c-Dec-4	0.438	0.132	-0.077	0.146	J16c
C11d-FS -3	0.411	0.130	0.029	-0.216	J11d
C19b-Pct -3	0.410	0.057	0.026	0.185	J19b
C01a-FS -9	0.394	0.009	-0.342	0.219	J1a
C03d-FMS -4	0.392	-0.218	0.030	-0.152	J3d
C13d-FM -5	0.371	0.354	0.194	-0.214	J13d
W10c-FA -0	0.367	0.035	0.062	0.067	J10c
W12c-FSMn-2	0.354	0.334	0.004	-0.066	J12c
W20a-Pct -0	0.293	0.018	0.161	0.183	J20a
C14c-FDMn-5	0.288	0.100	0.017	0.117	J14c
W10b-FA -0	0.234	0.047	0.120	0.172	J10b
C09b-FAMn-6	0.227	-0.112	0.042	-0.022	J9b
W06c-FAS -0	0.224	0.029	0.024	0.064	J6c
W04c-FDS -7	-0.257	0.108	0.107	0.213	J4c
W17a-FDec-0	-0.280	0.192	0.202	0.158	J17a
W19a-Pct -3	-0.292	0.282	0.060	0.333	J19a
W01d-FS -9	-0.203	0.044	-0.127	0.002	J1d
W18d-FM -4	0.052	0.572	0.037	-0.068	J18d
W03a-FMS -4	-0.133	0.543	-0.053	0.110	J3a
C15c-FD -3	0.079	0.494	-0.034	0.056	J15c
W08d-FSS -4	-0.086	0.461	0.067	0.002	J8d
W06d-FAS -0	0.087	0.455	0.019	0.061	J6d
W16a-Dec -4	-0.083	0.449	-0.021	0.082	J16a
W02a-FMS -0	0.159	0.444	-0.040	-0.009	J2a
W07a-FAS -4	-0.194	0.416	-0.143	0.340	J7a

W20c-Pct -0	0.073	0.393	0.337	-0.057	J20c
W05b-FDS -6	-0.180	0.384	0.233	0.034	J5b
W09d-FAMn-6	0.109	0.328	0.102	-0.083	J9d
W19c-Pct-3	0.070	0.325	-0.076	0.098	J19c
W10d-FA -0	0.171	0.245	0.105	-0.122	J10d
W17d-FDec-0	-0.025	0.216	0.139	0.116	J17d
W08c-FSS -4	-0.087	0.212	0.044	0.089	J8c
W07d-FAS -4	-0.031	-0.220	0.122	0.080	J7d
W13b-FM -5	0.122	-0.227	0.025	0.215	J13b
W02c-FMS -0	0.186	-0.258	-0.072	0.055	J2c
W07b-FAS -4	0.104	0.070	0.581	0.010	J7b
W14b-FDMn-5	-0.078	0.155	0.555	0.081	J14b
W08b-FSS -4	-0.027	0.021	0.517	-0.062	J8b
W06b-FAS -0	-0.090	-0.065	0.437	-0.019	J6b
W03b-FMS -4	-0.123	-0.121	0.437	-0.013	J3b
W19d-Pct -3	0.185	-0.088	0.423	0.059	J19d
W12a-FSMn-2	0.067	0.251	0.417	-0.042	J12a
W01b-FS -9	-0.094	0.091	0.409	-0.044	J1b
W13a-FM -5	0.122	-0.042	0.407	0.227	J13a
W01c-FS -9	-0.084	-0.003	0.389	-0.030	J1c
W15b-FD -3	0.140	-0.002	0.373	0.126	J15b
W11b-FS -3	0.047	0.211	0.324	-0.064	J11b
W16d-Dec -4	0.145	0.052	0.283	-0.073	J16d
W04a-FDS -7	-0.228	0.067	0.255	-0.003	J4a
W02b-FMS -0	-0.188	-0.140	0.255	0.161	J2b
W18c-FM -4	0.191	0.034	0.217	-0.008	J18c
W11c-FS -3	-0.038	-0.101	0.036	0.518	J11c
W10a-FA -0	-0.235	0.217	-0.016	0.444	J10a
W20d-Pct 0	0.015	0.167	-0.074	0.422	J20d
W05d-FDS -6	0.034	0.014	0.068	0.421	J5d
C12b-FSMn-2	0.064	-0.043	-0.025	0.407	J12b
W03c-FMS -4	0.076	-0.181	-0.097	0.392	J3c
W18b-FM -4	0.079	0.006	0.216	0.374	J18b
W16b-Dec-4	-0.030	-0.151	0.276	0.373	J16b
W14a-FDMn-5	0.139	0.155	-0.225	0.370	J14a
W13c-FM -5	0.028	0.294	-0.251	0.349	J13c
W15a-FD -3	0.117	-0.044	0.107	0.317	J15a
C18a-FM -4	0.208	-0.031	0.008	0.300	J18a
W11a-FS -3	0.116	0.245	-0.045	0.295	J11a
W06a-FAS -0	-0.043	0.144	0.086	0.290	J6a
W12d-FSMn-2	0.065	0.010	-0.053	0.278	J12d
C09a-FAMn-6	0.050	0.116	-0.064	0.268	J9a
W09c-FAMn-6	-0.080	-0.068	0.136	0.265	J9c
W17b-FDec-0	0.106	0.233	-0.161	0.256	J17b
W15d-FD -3	0.241	0.069	-0.018	0.244	J15d
W04d-FDS -7	-0.123	0.189	0.116	0.211	J4d

Figure 3: IRT and MIRT Plots for Question 18 (Q18):

From Figure 3, the IRF of the actual item P (theta) is plotted in blue. The red IRF curve for judgment A represented the most correct solution strategy for Q18. It stated, "I thought I should change the $1 / 4$ to .25 and then multiply by 1224 ." This judgment was less discriminating over a broader range of ability. The other three IRF judgment curves represented misconceptions, the light blue of which is rightmost and happens to affect slightly more able students than the other two judgment curves. It was judgment D and it was stated as "I should have cross multiplied 1224 by $4 . "$ It had the highest loading on the second factor. The green curve represented the judgment B, "By multiplying 1224 by .25 , I got 30,600 . The purple curve represented the judgment C, "I didn't know I should divide 1224 by 4 ." Figure 3 demonstrates for the first dimension of the MIRT analysis that the misconception or Wrong judgment that affected the most able students had to do with cross multiplying. This could be stated because it was further to the right on the theta scale.

Discussion: Cognitive models for ill-structured content domains are becoming more important as deficiencies and the need for developmental education grow in the United States and around the world. If researchers can begin to understand and model what makes concepts in test items
difficult, then it is incumbent upon us as a research community to be able to diagnose those difficulties. By only examining ability estimates without decomposing items into their difficult parts, we will be standing still and not collecting additional data to understand item difficulty. Since differences were found with the two models, then implications exist for informing instructional methods for teaching such basic arithmetic concepts and computation by providing for faculty development.

By supplementing test scores with judgments of the intrinsic difficulty of items, the responses processes of examinees can be better understood than is usually the case. Including these judgments would make it possible to improve the validation of test score interpretations for two reasons: (1) factor analyses on the judgments of the difficulty of items by examinees provide for greater specificity of examinee misconceptions and (2) MIRT analysis of each item provides feedback on the solution strategies used by examinees for each item and allows for the comparison of MIRT analyses to traditional IRF curves.

Limitations:

While possibly decreasing the extent to which error is present in the validation inferences for test scores, there are some drawbacks as well that may come about because of the errors inherent in the solution strategies themselves. More needs to be understood as to that nature of the judgments or solution strategies. It also needs to be determined if instructing students with respect to their major misconceptions about the subjects in question is superior to that of presenting the best solution strategy hoping that it overrides the students' ingrained cognition approaches to each of the test questions.

References:

American Educational Research Association, American Psychological Association, National Council on Measurement in Education (1999). Standards for Educational and Psychological Testing: Washington, DC: Author.

Ericsson, K.A. \& Simon, H.A.(1993). Protocol analysis: Verbal reports as data (revised edition).Cambridge, MA. MIT Press.

Henrich, J., Heine, S.J. \& Norenzayan, A. (2010). The weirdest people in the world? Social Science Research Network.

Scriven, M. (2002).Assessing six assumptions in assessment. In H.I. Braun, N. Jackson \& D.E. Wiley (Eds.: pp. 268-287) The role of constructs in psychological and educational measurement. Mahawah, NJ: Lawrence Erlbaum Associates.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational and Psychological Review, 22(2), 123-38.

