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Abstract 
 

 
A crucial step in applying item response theory to practical testing problems is the 
estimation of ability and item parameters in the chosen item response model.  It is 
usually not possible to estimate the parameters analytically.  In the situation where 
there is only one parameter, two fast iterative numerical procedures for finding the 
maximum likelihood estimate of the parameter are presented in this paper.  A 
numerical example is given to illustrate their use.  Scope for further research is then 
discussed. 
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Introduction 
 
Whether item response theory can be successfully applied to provide solutions to 
practical testing problems depends very much on the availability of procedures for 
estimating the examinee’s ability parameter and the item parameters, for example, 
item difficulty, item discrimination and the guessing parameter.  An approach that is 
often adopted in the estimation of parameters is the maximum likelihood method.  An 
advantage of the maximum likelihood method is that the asymptotic sampling 
distributions of maximum likelihood estimates are known.  This knowledge facilitates  
the application of item response theory.  
 
It is assumed hereafter in this paper that there is only one unknown parameter in an 
item response model to be estimated. 
 
Newton –Raphson Procedure 
 
A common and powerful method of finding the maximum likelihood estimate (mle) of a 
parameter θ  when the likelihood equation:  
 
   ( ) 0l' =θ  
 
cannot be solved analytically is the Newton-Raphson iterative procedure (Burden and 
Faires 1993).  However, this procedure entails the existence of a continuous non-
vanishing second derivative of the likelihood function (or log-likelihood function), ( )θl , in 
the likelihood equation.  The second derivative, if it exists, may be tedious to compute.  
Furthermore, the initial point must be chosen sufficiently close to the root of the 
likelihood equation for the procedure to converge.   
 
Two Procedures Proposed 
 
This paper presents two iterative procedures for finding the mle of a parameter that 
require only a continuous first derivative of the likelihood function and the identification 
of two arbitrary points between which the maximum point of the likelihood function lies.  
The proximity of the two points to the maximum point is, however, not crucial for the 
convergence of the procedures. 
 
In the following two procedures, we assume that  is a likelihood function with a 
continuous first derivative and a unique maximum point and no other turning points.  A 
and B are two arbitrary points to the left and the right of the maximum point 
respectively, with  and 

l

( ) 0Al' > ( ) 0Bl' < .  
 
Procedure 1 
 
The sub-interval contained in the interval (A, B) over which l'  changes sign (and hence 
contains the maximum point) is identified and is progressively made finer until the pre-
determined accuracy is achieved using the following algorithm: 
 
Step 1  Fix two points A and B with A to the left and B to the right of the maximum 

point of the likelihood function  
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Step 2 Compute the value of ( )θl'  at A and B to verify that ( ) 0Al' >  and . ( ) 0Bl' <
 
Step 3 Divide the interval (A, B) into 10 equal sub-intervals with the points P0, P1,       

P2, ..., P10, where P0 = A and P10 = B. 
 
Step 4   Compute the value of ( )θl'  at Pi, i=1 to 10 until l  changes sign or vanishes. '
 
Step 5 Suppose   and ( ) 0Pl' i < ( ) 0Pl' j > , j = 1 to i-1.  Sub-divide the interval  

into 10 equal sub-intervals. 
( )i1-i P,P

 
Step 6 Compute the value of ( )θl'  at each of the end-points of the  sub-intervals 

between  and  immediately after  until 1-iP iP 1-iP ( )θl'  changes sign or 
vanishes. 

 
Step 5 and Step 6 are repeated until the width of a sub-interval is less than the error 
margin.  The point at which ( )θl'  vanishes or any point in the sub-interval over which 
( )θl'  changes sign can then be assigned to be the value of the mle to the required 

accuracy. 
 
Procedure 2 
 
A sequence of points, alternately smaller and larger than the root of the likelihood 
equation, is computed so that the sequence converges to the root as follows: 
 
Step 1  Fix two points A and B with A to the left and B to the right of the maximum 

point of the likelihood function.  
 
Step 2 Compute the value of ( )θl'  at A and B to verify that ( ) 0Al' >  and . ( ) 0Bl' <
 
Step 3 Let C = B – (B – A) / 4. 
 

Step 4 Compute .  If < 0, shift C to the left gradually each time by ( )Cl' ( )Cl'
2
1   of 

the distance between its current position and A until ( )Cl'  > 0.  A1 will be 
assigned the value of C when ( )Cl'  > 0 for the first time. 

 
Step 5 Let D =  A1 + (B – A1)/4. 
 

Step 6 Compute .  If > 0, shift D to the right gradually each time by ( )Dl' ( )Dl'
2
1  of 

the distance between its current position and B until ( )Dl'  < 0.  B1 will be 
assigned the value of D when ( )Dl'  < 0 for the first time. 

 
Step 3 – Step 6 constitute one iteration.  In the ith iteration, replace A and B with Ai-1 
and Bi-1 respectively.  The procedure is stopped when the value of ( )θl'  vanishes or 
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the width of either of the two sub-intervals: (Ai, BBi-1) or (Ai, BiB ) is less than the error 
margin.  The point at which ( )θl'  vanishes or any point in the sub-interval (Ai, BBi-1) or (Ai, 

BiB ) can then be assigned to be the value of the mle to the required accuracy. 

The choice of the factor 
4
1  in Step 3 and Step 5 is arbitrary and hence may not be 

optimal while the choice of the factor 
2
1  in Step 4 and Step 6 is to ensure that C and D 

converge to Ai-1 and Bi-1 for  and ( )Cl' ( )Dl'  to turn positive and negative respectively. 
 
Example 
 
Consider the likelihood function 
  ( ) ( )θθθ −= 1l . 
Then  
  ( ) θθ 21l' −= . 
Here the mle is exactly equal to 0.5. 
Let A = 0.1 and B = 1. 
Procedure 1 takes 17 computations and Procedure 2 takes 14 computations of ( )θl'  to 
estimate the mle with an error of less than 0.001.  However, dividing (A, B) into sub-
intervals of width 0.001 and estimating the mle by brute force i.e. by computing ( )θl  at 
each of the end-points would require close to 900 computations of ( )θl . 
 
Discussions 
 
Procedure 1 and Procedure 2 are simple to use and are relatively fast.  They only 
require the likelihood function to have a continuous derivative.  Procedure 1 could be 
made shorter by computing the value of ( )θl'  only at selected end-points of the sub-

intervals.  The factor of 
4
1  used in Step 3 and Step 5 of Procedure 2 is chosen 

arbitrarily.  More research could be conducted to see if other values of the factor can 
be used to expedite the procedure.  Procedure 2 is the faster of the two procedures in 
finding the mle in the above numerical example.  However, it is not known whether this 
holds for all cases. 
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