New Parameterization of the T Score Values: A Case Study of the Standardization of the Kenya Certificate of Primary Education (KCPE) Examination

Presented at

The 41 ${ }^{\text {st }}$ International Association for Education Assessment (IAEA) $11^{\text {th }}-\mathbf{1 5}^{\text {th }}$ October, 2015 Lawrence, Kansas, USA

By

Andrew F Otieno
Research \& Quality Assurance Division The Kenya National Examinations Council, Nairobi, Kenya E-Mail: fotieno@knec.ac.ke

Abstract

Standardization of raw examination marks is a vital procedure in ensuring the validity of examinations results that is undertaken by assessment bodies. In Kenya, the Kenya Certificate of Primary Education examination (sat after the first eight (8) years of basic education) uses eight tests/papers that are standardized before they are combined to get the overall results. The current standardize score computed using fixed parameters of test mean of 50 and standard deviation of 15 and 12 for the objective/multiple choice papers and composition/essay papers respectively. The mean and standard deviation of raw marks in humanities, mathematics and science subjects are quite distinct and thus subjecting the marks to the same fixed parameters when standardizing raw marks leads to biasness that disadvantages candidates in mathematics and sciences subjects.

The purpose of this study is to address the limitation of application of a fixed mean and standard deviation on the standardization of tests that have different performance characteristics that leads to disadvantaging examines in some subjects. Using data from the Kenya National Examinations Council, new parameters have been generated and applied in the computation of the standardized marks for different tests/papers in the years 2012 to 2014. The new standardized scores distribution are compared to that of the current standard scores distribution and applied on standard normal distribution curve.

The study establish that the distribution of marks produces a better and valid standardize scores than the one that is currently used in Kenya with a fixed mean and standard deviation for all tests. The method is transparent and ensures that the standardize scores of high and low abilities candidates at both tails of the curve are not distorted to disadvantage/advantage one group of examinees.

Key Words: Standardization, Standard Normal Distribution

Introduction

The Kenya Certificate of Primary Education (KCPE) examination is a Norm Referenced (N.R) examination which aims at comparing a candidate's performance to that of other candidates taking the examination. The main purpose of KCPE examination is the selection and placement of students to the secondary schools.

Secondary school admission in Kenya is competitive as the number of vacancies in 'good' schools is limited. This means that students must be ranked in a way to ensure fairness. Therefore, all subjects' marks must be of the same weighing. Marks from subjects as varied as Mathematics, Science, English, Kiswahili, Social Studies and Religious Education must be on the same scale of measurement to produce a meaningful result. KNEC uses a series of processes to convert the raw marks for different courses to the same measurement scale. The scaled scores for the subjects are then be added together to get the overall score that is used for selection of students. This marks adjustment process caters for differences in cognitive abilities and ensures that students are not disadvantaged in 'difficult' subjects, nor advantaged in 'easy' one.

Before the awarding stage of examination, there are other standard setting initiatives adhered by the KNEC in the conduct of the KCPE examination processes from the stage of development of question papers, administration of examination and marking of answer scripts. However to maintain the integrity, credibility and public confidence in the KCPE qualification, the statistical standardization during awarding is necessary so as to take care of variation in the question papers, which may occur despite careful development of the test items as well as marking that, may occur from year to year.

KNEC adopted the T-score distribution with fixed parameters in its standardization process that has resulted to severe scaling down of high ability candidates' marks and up scaling of low ability candidates' marks in Mathematics and Science subjects. No candidate has been awarded a scaled percentage mark of over ninety (90%) for several years even though the two subjects have been registering the best mean performance of the raw marks from year to year. This has led to the two myths that are frequently expounded about the KCPE examination standardization process by the
stakeholders. Firstly, the myth that private schools have their marks deducted because they have better facilities. Secondly, there is the myth that private schools scores are standardized differently to those of public schools.

Review of Literature on the Standardization of Examinations Results

Standardization is the moderation process used to mitigate the effect of the factors other than learners' knowledge and aptitude on their performance. Standardization removes variable elements from test scores and allows candidates to be compared equally. It is fair to say that very few people fully understand the process! There are too many factors that are unknown to the general public the relative difficulty of the paper, the ability of the cohort, and so on - to allow you to calculate a standardized score directly from a raw score.

The standardization of results is an international practice undertaken by all assessment agencies in the world to evaluate whether the examinations has produced scores that are valid and reliable. The process of standardization has been dominated by statistics data and is based on the principle of equivalence of standards from year to year. Standardization enhances the consistency and fairness of the scoring. Establishing a criterion or norm referenced standard for passing and failing candidates, standardizes the process of making pass and fail decisions.

There is a controversy on subjects difficulties over the years, Nuttall et al., (1974) reported that science and languages subjects were found to be more difficult than other subjects. Kelly (1975, 1976a, 1976b) published her investigations into 'soft' and 'tough' options in Scottish Higher examinations. She developed the subject pairs methodology from Nuttall et al. and obtained a similar ordering of subjects for difficulty. Kelly also noted variation in the results between subjects over the four years of her study, and particularly between boys and girls, noting that the actual use of a correction factors was thus problematic. She found however that languages, chemistry and physics were consistently more difficult, with biology and mathematics relatively less so. Then, in 1994, Fitz-Gibbon and Vincent's ALIS-based investigation was published which specifically addressed the question "are mathematics and science more difficult than other subjects at A-level?"

They carried out their analysis in four different ways, and consistently concluded that these subjects were more difficult.

Many different statistical methods have been used to standardize examinations in different subjects:

Percentile ranks

Percentile rank is a point in a distribution at or below which the scores of a given percentage of students fall.

Stanines

Stanines are bands of standard scores that have a mean of 5 and a standard deviation of 2 . Stanines range from 1 to 9 .

Deviation IQ Scores

Deviation IQ Scores are frequently used to report the performance of students on norm-referenced standardized tests. The deviation scores of the Wechsler Intelligence Scale for Children-III and the Wechsler Individual Achievement Test-II have a mean of 100 and a standard deviation of 15, while the Stanford-Binet Intelligence Scale-IV has a mean of 100 and a standard deviation of 16 . Many test manuals provide tables that allow conversion of raw scores to deviation IQ scores.

Normal Curve Equivalents

Normal curve equivalents (NCEs) are type of standard scores with a mean of 50 and a standard deviation of 21.06. When the baseline of the normal curve is divided into 99 equal units, the percentile ranks of 1, 50, and 99 are the same as NCE units (Lyman, 1986)

Z-Scores

A Z-Score is a statistical measurement of a score's relationship to the mean in a group of scores. It has a mean of 0 and a standard deviation of 1 . A Z-score of 0 means the score is the same as the mean. Z-score can be positive or negative, indicating whether it is above or below the mean and by how many standard deviations

T-Scores

A T-score is a standard Z score shifted and scaled to have a mean of 50 and a standard deviation of 10

Purpose of the Study

This study sought to achieve the following objectives:

- Analyze the scaled scores for candidates in the Kenya Certificate of Primary Education (KCPE) examinations more importantly on the effect of the extreme raw scores;
- Compare the scaled scores in subject generated by the initial and the new T-score;
- Established the effect on the scaled scores in fitting to the normal standard distribution

Method

This study compares the consistency of scaled marks distributions obtained from using the T-score distributions, one based on a fixed parameters and the other on a variable parameters models. The scaled scores for the year 2012, 2013 and 2014 were calculated and compared in reference to the distribution on the percentile scale with respect to the mean and standard deviations of the raw scores of all the candidates who sat the examination in the respective year.

Computation the T-Score in KCPE Examination

The KCPE examination syllabus is tested using a total of seven (07) subjects which are examined in ten (10) papers. Candidates are expected to sit for eight (08) papers in one sitting.

The examination is standardized by use of T-scores distribution with a fixed mean (μ) of 50 mark and a standard deviation (δ) of 15 and 12 for papers scored out of 50 and 40 respectively.

$$
\begin{equation*}
X_{s}=Z \delta+\mu \tag{1}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{S}}=\text { Standard Scores } \\
& \mathrm{Z}=\mathrm{Z} \text {-Score } \\
& \delta=\text { Standard deviation } \\
& \mathrm{M}=\text { Mean }
\end{aligned}
$$

If X_{s} is less or equal to zero (0) the number is replaced by 1 and if it is greater than ninety nine (99) the number is replaced by 99 . For standardization of multiple choice tests that is scored out of 50 marks, a fixed mean of 50 and Standard Deviation of 15 the formula used is as follows:-

$$
\begin{equation*}
X_{s}=15 Z+50 \tag{2}
\end{equation*}
$$

Derivation of the New T Score Distribution

The test is derived from the following assumptions:
$>$ The expected mean of paper scored in percentage and is normally distributed is 50 ;
$>$ All the candidates' scores will lie within three standard deviations of the mean since we are dealing with a large population whose scores are mutually independent.

Therefore the T-score distribution standard deviation is computed as follows:

$$
\begin{equation*}
\delta=\frac{50}{3}=16.67 \tag{3}
\end{equation*}
$$

Mathematics and Science is tested using 50 items thus the T-score distribution mean that is used to scale the subject marks is doubled be raised it to percentage.

$$
\begin{equation*}
\mu=2 \bar{X} \tag{4}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mu=\text { T-score mean } \\
& \bar{X}=\text { Mean of raw mark }
\end{aligned}
$$

The new T-scores distribution is given by:

$$
\begin{equation*}
X_{s}=16.67 Z+\mu \tag{5}
\end{equation*}
$$

Where:

$$
\begin{gathered}
\mathrm{X}_{\mathrm{S}}=\text { Standard Scores } \\
\mu=\mathrm{T} \text {-score mean }
\end{gathered}
$$

If the computed T-Score is less than or equal to zero (0) the difference from the first positive integer is uniformly distributed to the values below the integers and if the T-score is greater than 99 mark, the marks are replaced by 99 .

Findings of Application of the T-scores in scaling of the Raw Marks

The mean and standard deviation of subjects in the KCPE examination between the years 2012 and 2014 is shown in table 1.

Table 1: Mean and Standard Deviation of KCPE Examination Subjects between the Years 2012 and 2014

Subject	2014		2013		2012	
	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation
English Grammar	23.82	6.29	26.53	6.81	24.94	6.36
English Composition	16.59	7.03	16.76	7.22	16.97	7.23
Kiswahili Grammar	22.52	5.65	22.89	5.86	23.37	6.27
Kiswahili	23.20	7.14	20.98	6.98	21.99	7.34
Composition						
Mathematics	26.02	10.12	26.43	9.47	28.15	10.51
Science	33.01	9.39	30.91	8.54	32.02	9.51

NOTE: English and Kiswahili Composition are scored out of 40 marks; Mathematics and Science means are above average and has the best dispersion (δ) of marks

The parameters for the new T-scores were calculated using formulae 3 and 4 and are shown in table 2.

Table 2: Mean of New T-Scores for Subjects between the Years 2012 and 2014

Subject	T-Score Mean		
	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 2}$
English Grammar	47.64	53.06	49.88
English Composition	40.48	41.9	42.43
Kiswahili Grammar	45.04	45.78	46.75
Kiswahili Composition	58.00	52.45	54.98
Mathematics	52.06	52.86	56.30
Science	66.02	61.82	64.04

Table 3, 4 and 5 presents the scaled scores of candidates in the test using the current and new TScore distribution for the year 2012, 2013 and 2014.

Table 3: Standardized Marks using the T-Score Distribution for the Years 2012 to 2014 in Mathematics and Science

Subject	Year	Score	1	5	10	15	20	25	30	35	40	45	50
Mathematics	2014	Current	13	19	26	34	41	48	56	63	71	78	86
		New	11	17	26	34	42	50	59	67	75	83	92
	2013	Current	10	16	24	32	40	48	56	64	71	79	87
		New	8	15	24	33	42	50	59	68	77	86	94
Science	2012	Current	11	17	24	31	38	46	53	60	67	74	81
	2014	New	13	20	27	35	43	51	59	67	75	83	91
		Current	1	5	13	21	29	37	45	53	61	69	77
	2013	New	9	16	25	34	43	52	61	70	78	87	96
		Current	1	4	13	22	31	40	48	57	66	75	84
	2012	New	3	11	21	31	40	50	60	70	80	89	99
		New	10	17	25	34	43	52	60	69	78	87	96

Table 4: Standardized Marks using the T-Score Distribution for the Years 2012 to 2014 in English and Kiswahili Grammar

Subject	Year	Score	1	5	10	15	20	25	30	35	40	45	50
English	2014	Current	1	5	17	29	41	51	65	77	89	99	99
Grammar		New	1	2	11	24	37	53	64	77	91	99	99
	2023	Current	1	3	14	25	36	47	58	69	80	91	99
		New	1	2	13	25	37	49	62	74	86	98	99
	20212	Current	1	3	15	27	38	50	62	74	86	97	99
Kiswahili	2014	Current	1	3	17	30	43	57	70	83	96	99	99
Grammar		New	1	1	8	23	38	52	67	82	97	99	99
	2013	Current	1	4	17	30	43	55	68	81	94	99	99
		New	1	2	9	23	38	52	66	80	95	99	99
	2012	Current	1	6	18	30	42	54	64	78	90	99	99
		New	1	2	11	24	38	51	66	78	91	99	99

Table 5: Standardized Marks using the T-Score Distribution for the Years 2012 to 2014 in English and Kiswahili Composition

Subject	Year	Score	1	5	10	15	20	25	30	35	40
English	2014	Current	23	30	39	47	56	64	73	81	90
Composition		New	3	13	25	37	49	60	72	84	96
	2013	Current	24	30	39	47	55	64	72	80	89
		New	5	15	26	38	49	61	73	84	96
	2012	Current	23	30	38	47	55	63	72	80	88
		New	6	15	26	38	49	61	73	84	96
Kiswahili	2014	Current	13	19	28	36	45	53	61	70	78
Composition		New	6	15	27	39	51	62	74	86	97
	2013	Current	16	23	31	40	48	57	66	74	83
		New	5	14	26	38	50	62	74	86	98
	2012	Current	16	22	30	39	47	55	63	71	79
		New	7	16	28	39	50	62	73	85	96

Observations from tables 3, 4 and 5

- The new T-Score distributions of scaled marks at the tails (1-10 and 40-50) are uniformly distributed;
- The median value of the new T-Score distribution has a value of 50 ± 2;
- The range of distribution of marks for the new T-Score distribution covers a good area of the percentile range.

Discussion

The variable parameter T-Score distribution model is the best fitting model between the two models distribution the maximum marks to over 90% compared to current fixed parameter T-Score distribution model where maximum mark is scaled to as low as 78% mark. The model has produced a normal curve equivalent model covering a wider range of percentage area addressing the biasness of a fixed T-Score distribution.

The scaled marks clearly shows that there is fairness on scaling of high abilities candidates in Mathematics and Science subjects with respect to low abilities candidates when variable parameters are used to standardize the raw scores using T-Score distribution.

Conclusion

This study investigates the effect of scaling raw marks using a T- Score distribution with fixed and varying parameters. It has found that a T-Score distribution of fixed parameter has biasness depending in regard to the differences mean and standard deviation of the test. This is more pronounce in Kenya where there are few private schools that performs exceptionally well but their good results are severely affected by the bulk of the candidates who performs dismally in public school thus pulling down their good marks. The use of varied parameters in the T-Score distribution for different subjects addresses this biasness as students from the extreme abilities are scaled fairly.

Acknowledgement

The author is grateful to the Kenya National Examinations Council for provision of data and peer reviewers who offered valuable critique/comments that greatly improved the paper.

Reference

Fitz-Gibbon C.T. and Vincent, L. (1994). Candidates' Performance in Public Examinations in Mathematics and Science. London: SCAA.

Fitz-Gibbon C.T. and Vincent, L. (1997). Difficulties regarding subject difficulties: developing reasonable explanations for observable data, Oxford Review of Education, 23, 3, 291298.

Kelly, A (1975). The relative standards of subject examinations. Research Intelligence, 1, 34-38
Kelly, A (1976b). The comparability of examining standards in Scottish Certificate of Education Ordinary and Higher Grade examinations. Scottish Certificate of Education Examining Board

King'oriah G. K. (2004). Fundamental of applied statistics. Nairobi: Icon printers ltd.
Nuttall DL, Backhouse JK \& Willmott AS (1974). Comparability of Standards between Subjects. Schools Council Examinations Bulletin 29.

The Kenya National Examinations Council. (2013). The year 2012 KCPE examinations report. Nairobi: KNEC.

The Kenya National Examinations Council. (2014). The year 2013 KCPE examinations report. Nairobi: KNEC.

The Kenya National Examinations Council. (2015). The year 2014 KCPE examinations report. Nairobi: KNEC

