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Defining the ‘digital mathematics curriculum’ 

Can old assessment structures measure achievement in the digital mathematics 
curriculum?  Or do we need to re-think the assessment of school mathematics in the 
digital age?  This is an important question for us as test developers – but it is not a 
simple one.   

Before we can consider the possible impact of the digital mathematics curriculum on 
assessment we need to identify some key features of that curriculum.  What makes it 
different?  One key aspect of the new curriculum is the use that can be made of 
computer graphics.  In the United Kingdom, the impact of computer graphics on the 
teaching and learning of mathematics in primary and secondary school classrooms is 
increasing rapidly as more and more schools obtain access to an expanding range of 
mathematics teaching software.  Computer graphics can be dynamic, interactive, and 
infinitely variable.  They enable us to share mental images of structures, patterns and 
working systems that have hitherto been hidden away inside each individual’s mind.  
They put into motion the flat, static ‘snapshot’ views of drawn or printed diagrams.  
As Kate Mackrell and Peter Johnston-Wilder remark,  

‘One of the ironies of trying to describe motion and its effects in text is that one 
necessarily has to miss out on all of the essential ingredients.  Not least 
among these is the sense of surprise and wonder that animating 
mathematical diagrams and images can bring, externalising and setting back 
in motion images that have been held static in the pages of textbooks for over 
2000 years.’ 
Mackrell, K and Johnston-Wilder, P, 2005, p 82 

The dominance of print as the defining factor of ‘proper’ mathematics is, at last, being 
challenged in the classroom.  This change may need to be reflected in assessment.  But 
just what difference does it make to what teachers teach or to what students learn? 

Many teachers in the United Kingdom have found that a familiarity and facility with an 
ever-growing range of mathematics teaching software can help them to make key 
concepts accessible to a much wider range of students.   Examples abound.  Some of 
the most commonly reported are those that come from the use of dynamic geometry 
packages such as Cabri Geometre or Geometer’s Sketchpad.  Dynamic geometry 
software allows the user to construct diagrams that keep their defining features, while 
their dependent features can be varied at will.  So, for example, a parallelogram may 
be constructed to have two pairs of parallel opposite edges of equal length, and two 
pairs of equal opposite angles.  These properties of the construction will be 
maintained as the student drags a vertex of the parallelogram to vary its non-defining 
properties.  The angles will become greater or smaller, and the sides will become 
longer or shorter, but each pair of opposite angles will remain equal, and each pair of 
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opposite sides will remain both equal and parallel.  In this way the parallelogram will 
change its shape, but it will still be a parallelogram.   (For a simple, free example of 
this, go to http://www.mathsnet.net/dynamic/cindy/parallelogram.html.  See Fig 1).   

 

 

 

 

 

 

 

 

In this way the student becomes familiar with parallelograms and other geometric 
shapes, and may develop a feel for their nature and their defining properties long 
before they learn the more formal definitions. 

So, as Rubin argues, in a traditional print-based classroom, 

‘Most students’ notions of geometry are, at worst, of two-column proofs 
that follow a series of arcane rules, illustrated by one or two static line 
drawings…. [Only those students who] enjoy and succeed in geometry 
are able to supplement these pictures with some sense of motion, e.g.: if 
this corner of the square moves here, that angle will grow twice as big.  
[But] the computer allows everyone to visualize these changes.’   

Rubin, A, 1999, p 3 

Thus the effect of the dynamic geometry packages may be to enable many more 
students to engage meaningfully with a range of mathematical concepts that were 
formerly restricted to the much smaller group who were ‘able to supplement…. [static] 
pictures with some sense of motion’, by ‘[allowing] everyone to visualize these 
changes’.  Furthermore, the support that the computer gives to these internal, mental 
visualisations encourages their development.  With time, many more students whose 
visualisation skills would have atrophied and faded in a traditional, text-book based 
environment are likely to improve their ability to think visually.  

Fig 1 Example of a dynamic geometry image 
The vertices of the rectangle can be dragged, and the angles and lengths of the 
sides changed, but the defining properties of the parallelogram are maintained. 

http://www.mathsnet.net/dynamic/cindy/parallelogram.html
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Another type of activity that may be opened up by ICT to a wider audience is 
mathematical simulation.  As Rubin explains,  

‘There are certain natural systems (most popularly, predator/prey 
systems) for which the basic structure is expressed by a relatively 
compact set of rules but the behavior can be vastly different depending on 
the value of a few variables such as the birth and death rates of the 
predators. Having a tool with which to explore these patterns not only 
gives students the opportunity to learn about a biological interaction, but 
teaches them about functions, variables, cyclical functions and sensitivity 
analysis. Exploring these concepts by hand is practically impossible, since 
the number of calculations necessary to see any kind of pattern is 
astronomical. A whole new area of mathematics is suddenly available to 
middle and high school students.’    
Rubin, A, 1999, pp 12-13 

So here again, an area of mathematics that used to be the province of a few 
advanced mathematicians has been opened up by the use of ICT to a much greater 
number of younger and less experienced students.  

Pedagogy and content 

So ICT clearly has much to offer to teachers who are able to access and use it in the 
classroom.  As Douglas Butler observes, 

‘There is plenty of anecdotal evidence that teachers can cover topics in 
less time (and more effectively) when ICT is used,’ 

although he acknowledges that   

‘This is not an easy point to prove with formal research’  
(Butler, D, 2005, p 125) 

But here the impact of ICT seems to relate, not so much to what students are taught, 
but to how they are taught.  On the other hand, our main interest, as test developers, 
is on the content rather than the pedagogy – on the what, not the how.  Our key 
question is: Do students who study mathematics in an ICT-rich environment actually 
learn something different to those who follow a totally print-based curriculum?  Or do 
they learn the same things – more quickly and effectively perhaps, but with no 
essential difference to the concepts being learnt?  This is significant, because if the 
nature of what is learnt is essentially the same in the two cases then there is no 
reason why we should not go on using the same assessment methods – the same 
kinds of tests, examinations and teacher assessment activities – that we have always 
used, however our students have been taught.  On the other hand, if the students in 
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the ICT-rich classroom are learning something that is qualitatively different – so that 
they develop a different set of key mathematical concepts – then these different 
concepts ought to be assessed. 

But here the picture suddenly becomes much more complicated.  It is very hard to 
define what it is that students learn with, or without, computers.  Rather, there is a 
continuum, with a lot of overlap.  

So, for example, we have seen that a significant aspect of an ICT-based mathematics 
curriculum is the ready availability of dynamic images.  But dynamic images are 
nothing new.  Some – though certainly not all – teachers have been using them, and 
writing about them, for years.  The approach to transformational geometry in the first 
School Mathematics Project (SMP) ‘O’ level course in Britain in the late 1960s, for 
instance, laid great stress on the development of what was then called students’ 
‘geometrical intuition’ – which is very close to what we might now refer to as their 
ability to visualise.  Students were introduced to mathematical translations in Book 2 
(for higher-achieving students aged 12 to 13 years), for example, with the explanation, 

 ‘When an object is translated each point of the object undergoes the 
same change of position because it moves the same distance in the same 
direction as every other point.  When you see a platoon of soldiers drilling, 
a formation team dancing, or a pair of ice skaters figure skating and see 
them moving as a single body it is because each person involved moves 
in exactly the same way.’  
(SMP 1970, pg 120-121) 

This picture of a group or a pair ‘moving as a single body’ is a strong dynamic mental 
image that supported students’ understanding of the concept of a mathematical 
translation. In later sections of the book copious exercises with tracing paper, mirrors, 
scissors and drawing pins were used to give students plenty of experience of the 
movements involved in such transformations as translations, reflections and rotations.  
These dynamic images fostered the mental visualisations that students needed if they 
were to make sense of transformational geometry. 

The dynamic images of Cabri Geometre or Geometer’s Sketchpad are a direct 
descendent of all those practical and kinaesthetic exercises of forty or more years 
ago.  What the computer does is not something completely new.  It just makes it much 
easier to create, manage and share such images.  ICT gives the student and the 
teacher greater access and more control, but some teachers, at least, have always 
offered powerful images to enable students to develop their understanding of 
mathematical concepts.  ICT can encourage and support the development of 
teachers’ and students’ visual imagery, but the imagery itself has been around, in the 
minds of some mathematicians and some teachers, since Pythagoras, perhaps – long 
before geometry was pinned down in printed text. 
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Opening the door to dynamic imagery 

What ICT can do, however, is to open the door to dynamic imagery to a much wider 
audience of teachers and students.  By making them so much more accessible, 
computers can bring the images into many more classrooms.  However, as with any 
door, opening it is one thing: persuading teachers to go through it is another.  As 
Kenneth Ruthven explains, any new technology  

‘is likely to be treated as a variant or hybrid of those that are better 
established and more familiar. When a new technology is assimilated to 
established methods …., it functions as an ‘amplifier’ of existing forms of 
action.’   
(Kenneth Ruthven, Sara Hennessy, Rosemary Deaney, in press) 

In other words, at least to begin with, any new technology is likely to be used to do 
much the same sort of thing, in much the same way, as the old technology.  There are 
many examples– the QWERTY keyboard that was Papert’s despair, for example, or 
the ‘on screen protractors’ provided in some primary mathematics teaching software 
packages (Papert, p 33; Key Press, http://www.keymath.com/x3311.xml).   Many 
teachers may use the new technology to go on teaching the old, print-based 
curriculum – more efficiently and more effectively, perhaps, but not, in the end, 
innovatively. 

The obstacles that can face attempts to change any aspect of school-based education 
have been remarked on many times. Noss and Hoyles (1996) summed up their 
pessimism in relation to mathematics education: 

‘The post-war period has been replete with attempts to reform children’s 
mathematical learning. Interestingly enough, many if not all of the 
initiatives were catalysed by a similar set of slogans: the curriculum is out 
of date; it does not reflect new ideas about mathematics and about the 
way it is learned, it does not help children develop their full mathematical 
potential; it produces negative attitudes to the subject among certain 
groups (such as girls and minorities); and finally, because of the 
importance of mathematics in today’s society, the poor competence in 
mathematics amongst the population at large has far-reaching 
consequences for national wealth and competitiveness.  A ‘solution’ is 
then proposed…. Whatever the solution, its standard trajectory begins 
with panacea and ends with disappointment. ’  
(Noss & Hoyles, 1996, pp 156-7) 

This is all very depressing.  But perhaps the difference in the case of the digital 
curriculum lies in the cultural change that is taking place in the wider society, quite 

http://www.keymath.com/x3311.xml
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independently of schools and the formal educational structure.   Many of the students 
in British classrooms now are ‘digital natives’: they became familiar with computers 
before they acquired such school-based skills as the ability to read a book or write 
with a pencil (Prensky, M, 2001).  Computer literacy is what they grew up with: 
traditional print-based literacy came later.  An increasing number of newly qualified 
teachers who are now entering the teaching profession have had similar experiences.  
The reign of the ‘digital immigrants’, whose education took place entirely or mainly 
before computers were commonplace in schools and homes, is inevitably limited.  It is 
perhaps difficult for those of us who were never taught to type at school, who cannot 
text properly, or who still turn to a reference book rather than a search engine when 
we want to check a fact or find some information, to realise just how inappropriate and 
inefficient our habits can seem to a digital native – but change, I would argue, is 
inevitable, in the classroom as much as in the home or the work place.  Eventually, as 
the digital natives take over positions of responsibility, the school curriculum, including 
the mathematics curriculum, will develop to support a digital-based, not a text-based, 
learning environment.  

Assessment and change 

One key factor that will determine the speed with which ICT will be embraced by the 
teaching community is the nature of formal assessment.  Teachers are, of course, 
duty bound to ensure that their students receive the best possible preparation for the 
tests and examinations that will determine their access to further education or their 
progress in the world of work.   If a practice is not allowed in the examination hall then 
it will not be taught, no matter how relevant it may be outside school.  So, for example, 
David Wright discusses the valuable contribution that graphical calculators can make 
to the teaching and learning of mathematics.  But, as he explains,  

‘In England, assessment policy for their use in A-level examinations has 
been inconsistent and has led to a reduced level of usage by students and 
teachers.’  
(Wright, D, 2005, pg 146) 

But even when the assessment structure itself is used to drive a change in pedagogy 
– on the grounds, perhaps, that ‘What You Test Is What You Teach’ (WYTIWYT) – the 
demand for a rigid marking scheme that can guarantee consistency across markers 
may undermine the innovators’ best intentions.  Noss and Hoyles describe how, 
following the Cockcroft report, Mathematics Counts (Cockcroft, 1982), there was a 
move in the UK to  

‘introduce investigative learning into mathematics classrooms’. 
(Noss and Hoyle, op cit, p157) 

As they explain, 
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‘The main vehicle by which this change was to be introduced was through 
extended coursework in GCSE mathematics for 16-year-old students’. 
(Noss and Hoyle, op cit, p157) 

But this attempt to use the assessment structure to create a change in the pedagogy 
foundered on the rock of marker reliability.  As the authors explain, 

‘…largely as a consequence of the requirements of assessment, 
investigations became institutionalised and lost their investigative 
character. The ubiquitous data-pattern-generalisation investigation which 
reduced all mathematical situations to numerical models and sought no 
justification beyond numerical argument, became drills of a new kind – in 
direct opposition to the original intentions of the reform and in the process 
lost all their mathematical integrity.’  
(Noss and Hoyle, op cit, p157) 

Thus the challenge is not only to identify aspects of the digital mathematics 
curriculum that cannot be assessed as effectively with a pen-and-paper test as with 
an ICT-based assessment, but also to devise computer-based activities that exploit 
the potential of the computer, and are not stripped of all their richness and value ‘as 
a consequence of the requirements of assessment’.  Not an easy task for the test 
developer! 

Assessing a digital mathematics curriculum 

So – if we want to develop an assessment structure that really does support and 
encourage the development of a digital mathematics curriculum in our classrooms, 
how might we go about it?  What might we seek to assess, and how?   

If, as has been argued here, mathematical models and dynamic images constitute one 
of the hall marks of the digital mathematics curriculum then the students’ ability to 
understand and to use these images may, perhaps, be regarded as at least one valid 
focus for the assessment of that curriculum.  This is an approach that we have 
adopted at the NFER in an attempt to develop a series of assessment instruments for 
students aged 9 to 11 years in the last two years of primary school.  These digital 
tests are designed to support and encourage, rather than undermining or subverting, 
the effective use of computers in the mathematics classroom.  In this series of tests 
the computer is first used to do what it is so good at – to provide a set of stimulating, 
engaging and enlightening dynamic models relating to the topic being assessed.  
Then the program goes on to assess the students’ ability, not just to answer questions 
on the topic, but to learn, and to actually develop their conceptual understanding in the 
course of the assessment.   
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At present the model is very crude, and essentially consists of a single structure.  A 
concept is introduced, using dynamic images.  Then a question is asked.  If the 
student answers the question correctly they gain two marks.  But if they cannot 
answer it then they are given further teaching in the form of a ‘help’ screen, and are 
invited to make a second attempt to answer the question.  If they get it right this time 
then they are awarded one mark.  Whether or not they got the question right at the 
first or second attempt, the concept is then explained again, in the context of the 
question that has been asked, before the student moves on to the next, related but 
more challenging, question.  (See Fig 2.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

So, for example, an assessment activity focusing on Algebra introduces the concept of 
an equation with a simple example, 2p + 1 = 5.  The dynamic image used to explain 
this concept involves a balancing scale.   The model of the scale, with 2p + 1 on one 
side, and 5 on the other, is built up step by step.  (See Fig 3.) 

 

 

 

Concept 
introduced, using 
dynamic models 

Question 
asked 

Correct 
response 

Incorrect 
response 

Further teaching in a 
‘help’ screen, again using 
dynamic models 

Question 
asked again 

Correct or 
incorrect 
response 

Concept explained again, 
using dynamic models 

Different, harder 
question asked 

Fig 2  The structure of the digital mathematics test questions 
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Then the student is taken through the process of solving the equation, modelled as 
the removal of equal quantities from each side of the balancing scale in turn.  The 
student is instructed to Click the button to subtract 1, first from the left-hand side,  and 
then from the right hand side.  (See Fig 4.) 

 

  

 

 

 

 

This gives a model of the simplified equation, 2p = 4.  The next step is to divide each 
side by 2, which is achieved by first splitting the objects remaining on each side of the 
scales into to two equal sets, and then removing half of the objects from each side.  
(See Fig 5.) 

 

 

Fig 4  Subtracting 1 from each side 

Fig 3  A balancing model of 2p + 1 = 5 
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This gives a graphical image of the solution to the equation, p = 2. 

A balancing scale is a mental image that has been used in some text books for many 
years (e.g. see Heylings, MR 1982, pp 8-12).  What the computer graphics offer, 
however, is the dynamic element, which brings the process of balancing the equation 
to life by allowing the student to watch the elements being rearranged or removed, 
step by step, on each side of the equation.  This can help to establish a clear 
understanding of the nature of an equation, in which everything on one side must 
have the same value as everything on the other.  This insight is essential if students 
are to develop a sound grasp of complex algebraic equations, but it can be 
undermined all too easily by a confusion caused by students’ familiarity, early in their 
school career, with the equals sign ‘=’ (Clausen-May, 2005, p 54).  Faced with an 
exercise of calculations such as 3 + 4 = , or 241.4 ÷ 17 = , or √(20449) + 313 = , or 
whatever, students may interpret the equals sign to mean Work out the calculation on 
the left, and write down the answer on the right.   When they come to solve algebraic 
equations such as n + 5 = 17, or 3n + 4 = 10, this failure to appreciate the meaning of 
the equals sign may be compounded by such rote-learnt rules as ‘change sides, 
change signs’. On the other hand, the computer allows us to show the image of the 
balance dynamically, and thus, perhaps, to support the understanding of an equation 
as a balance for a greater number of students. 

Having introduced the concept of an equation as a balance, with the image of the 
balancing scale to support it, the program goes on to ask the student to solve a 
different simple equation, 2b + 3 = 11.  A static image of the balancing scale is shown, 
but no further help is given at this stage.  (See Fig 6.) 

 

 

 

Fig 5  Dividing each side by 2 



 11 

 

 

 

 

 

 

 

 

 

 

 

Now if the student answers the question correctly their understanding is confirmed 
with an animation of the process of removing 3 from each side, and then dividing the 
remaining objects on each side into two parts and removing one of them.  If students 
are unable to solve the equation by themselves, however, they are shown only the 
first step in the solution.    (See Figs 7a and 7b.) 

 

 

 

 

 

 

 

 

 

 

 

2b + 3 = 11 

  b       =  ? 1            balances how many       ? 

2              and  3            balance              11 

Fig 6  A balancing model of 2b + 3 = 11 

2b + 3 = 11 

  b       =  ? 1            balances how many       ? 

2              and  3            balance              11 

Click the button to take 
3       from each side. 

To keep the balance we must always 
take the same amount form each side. 

Fig 7a  Subtracting 3 from each side 
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Then they are offered a second opportunity to find the solution to the first equation, 
before moving on to a second similar but more challenging problem. 

This model is being used to develop tests that cover a range of topics, including 
simple arithmetic, fractions, decimals, angles and rotations, and position and 
movement.  In each test, data may be collected not only on the students’ success or 
failure with each question but also on the development of their understanding during 
the course of the assessment itself.  A student may struggle when the first of a pair of 
questions is presented for the first time, but then, having worked though the ‘help’ 
screen, they may go on to answer it correctly.   Then they may find that they can 
answer another more difficult question on the same topic at the first attempt.  Such a 
student has shown evidence, not just of their mathematical knowledge and 
understanding, but, perhaps more importantly, of their ability to learn – to understand 
and apply a new concept.  This may be regarded as evidence, not just of rote-learnt 
knowledge, but of mathematical thinking of a different, and significant, kind.  The 
mathematical models and dynamic images that the computer makes available may, 
perhaps, constitute at least one aspect of the digital mathematics curriculum – and in 
order to assess the student’s understanding of these, we may need a new kind of test. 

The research on which tests like the one described above are based is still in its 
infancy, and the materials have yet to be fully trialled in the field.  None the less, 
although the phrase ‘assessment for learning’ has recently been attached to almost 
any assessment materials that can be used for diagnostic or formative purposes, the 
hope is that what has been described here may, perhaps, be regarded as a small step 
towards Black and Wiliams’ original objective that 

2b + 3 = 11 

  b       =  ? 1            balances how many       ? 

2              and  3            balance              11 

2                                    balance                8  

2b       =   8 

Fig 7b  Subtracting 3 from each side 
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‘The feedback [on tests] should give each student guidance on how to 
improve. ’  
(Black, P and William, D 1998, p13) 

The programs are designed both to teach and to test, so that the interface between 
assessment and learning is deliberately blurred for the student.  The reporting allows 
the teacher to find out, not just what the student knows, but also, and perhaps as 
significantly, how effectively they can learn a new concept.  The tests offer the 
possibility, at least, of a style of assessment that does, indeed, go beyond the 
traditional paper and pencil test to assess something different.   
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