
The Use of Novel Items to Uncover Lapses in Mathematical Reasoning 
 

Pang Wai-Kit Alwyn 
Singapore Examinations and Assessment Board 

 
 

Abstract 
Reasoning is integral to mathematics. However it is often difficult, in a written assessment, to judge if a student 
had possessed the correct mathematical reasoning behind a page of right answers. This paper reports the use of 
novel items and interviews to probe into the mathematical thinking behind the mathematical solutions of Grade 
12 (pre-university) students in Singapore in an attempt to gain an insight into the lapses in mathematical 
reasoning. Of particular interest in this study was an examination into what students accepted as valid 
mathematical explanations and justifications and how they justified their mathematical arguments. Some novel 
items were developed and administered to a group of 69 Grade 12 students and the errors recorded. Further 
information on the students’ reasoning processes was obtained through semi-structured interviews of a selected 
group of students from the sample. The responses to the items and the interviews were analyzed in the light of 
existing literature. The key finding was that many mathematical errors arose because students had overly relied 
on instrumental understanding, which limited their transfer of knowledge to new environments. Another 
important finding was that inductive strategies from previous experiences in deriving mathematical 
generalizations were mistakenly accepted as valid mathematical proofs. 
 
 
 

Introduction 
The assessment cycle begins with the elicitation of information of a student’s 

understanding on the subject. The information is then interpreted and used as evidence of the 
student’s attainment of learning outcomes to decide on further actions. It is only when 
assessors have gathered accurate information that appropriate actions in line with the intended 
purpose could be taken. In a pen and paper test, it is often assumed that a student has the 
correct understanding if he has written the correct answer. However, this is often not the case; 
especially when objective of the assessment is to elicit information on the reasoning processes 
in problem solving contexts. 

 
This study highlights some possible lapses in mathematical reasoning, some of which 

would have been overlooked if we had simply examined the correctness in the presentation. 
The specific research questions include: What are some of the mathematical reasoning lapses 
made by students? What may be the related causes of these lapses? It is expected that answers 
to these questions will provide teachers with insights into the reasoning lapses behind 
students’ mistakes. This could help teachers anticipate students’ errors and plan assessment 
tasks which might surface such reasoning lapses for feedback to improve learning. 
 

Background 
Since the National Council of Teachers of Mathematics [NCTM] suggested that 

"problem solving be the focus of school mathematics in the 1980s" in their publication the 
Agenda for Action (NCTM, 1980, p. 1), there has been a widespread realignment of 
mathematics pedagogy to incorporate mathematical problem solving into the curriculum. 
Singapore is no exception. In 1990, the Singapore Ministry of Education [MOE] embraced 
problem solving as the primary focus of its mathematics curriculum. Even though the 
curriculum went through a few revisions, the latest being in 2006, problem solving has 
remained the focus of the Singapore mathematics curriculum. Along with the latest revision to 
the Singapore mathematics curriculum, new assessment objectives were developed and 
included. There are now three levels of assessment objectives (AO1, AO2, AO3) for the 
examination of student achievement in mathematics at the Singapore-Cambridge GCE  
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A-Level examination1 (SEAB, 2007). It is envisioned that the assessment will test the 
students' abilities to: 

AO1 understand and apply mathematical concepts and skills in a variety of contexts, 
including the manipulation of mathematical expressions and use of graphic 
calculators; 

AO2 reason and communicate mathematically through writing mathematical explanation, 
arguments and proofs, and inferences; 

AO3 solve unfamiliar problems; translate common realistic contexts into mathematics; 
interpret and evaluate mathematical results, and use the results to make predictions, 
or comment on the context. 

 
These objectives require that the assessment make informed judgements of a student’s 

conceptual understanding and mathematical reasoning process. However as we have briefly 
discussed in the introduction, it is hard to make valid inferences about the mental processes of 
the student simply by the things one writes on a piece of paper (Skemp, 1978). This presents 
the difficulty of providing sound feedback, which is fundamental to formative assessments, in 
a traditional pen and paper mathematics assessment. 

 
Methodology 

This study is part of a larger qualitative study that was carried out by the author in a 
Junior College2 [JC] in Singapore. The participants in the study were 69 second year JC 
students3 of mixed abilities from four different classes. Among the 69 students, 28 of them 
were females and 41 were males. These students had finished the JC curriculum and were 
preparing for their Preliminary Examinations4 which is often treated as a benchmark to 
students’ preparation for the nationally administered Singapore-Cambridge GCE A-Level 
examination. A written test which included 16 free response questions, covering a range of 
topics from the A-Level Pure Mathematics syllabus, was constructed and administered to the 
participants. The items in the test were piloted with a small group of 6 students, not from the 
sample, and as a result some of the items were refined. Since the items were constructed to 
sieve out students with errors in mathematical reasoning, the items demanded knowledge of 
fine details to the mathematical concepts so that students who had applied procedures without 
reasons might be flagged out. As the objective was to investigate students’ mathematical 
reasoning processes and not test their ability to manipulate expressions, the expressions were 
consciously kept simple so that students would not be intimidated by complicated looking 
expressions or be hindered by tedious manipulations. So while the items were not the 
common ones encountered by students in their tutorial assignments, they were within the 
students’ capabilities. The students were told to take the test as an indication of their 
preparation for the preliminary examinations. As such the motivation of the students was 
high. The test was marked and the participants’ errors were documented. As an indication of 
how common the errors were, the proportion of the participants making similar errors was 
computed. A semi-structured interview was conducted with selected participants to probe into 
the reasoning of the students. Students from across the range of results were represented in the 
interview. Selected students took the interview as a feedback session, and so were 

                                                 
1 The Singapore-Cambridge GCE A-Level examination is a national public examination at the end of Grade 12. 
Its result is used for university admissions. 
2 Junior College is a two year programme equivalent to Grade 11 and Grade 12. 
3 Typical age of Grade 12 students are 18 years old. 
4 The Preliminary Examinations is an internal school examination at the end of the JC course in which students 
are tested on what they are taught over the two years. 
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forthcoming with their responses. The students who had the correct answers were also asked 
to comment on other students’ presentations. 

 
Throughout this study, the male-centric pronouns, e.g., “he” will be used to represent 

both the male and female gender and “I” is used to denote myself, the interviewer. All names 
used are pseudonyms. 
 

Results and Discussion 
 A key finding in this study is that generally students do mathematics by recalling and 

executing procedures, often applying rules without reasons. In Skemp’s (1978) terms, these 
students possessed an instrumental understanding of the concepts. This is opposed to those 
who possess relational understanding where they know the purpose and reasons behind the 
procedures and why they work. Skemp had confessed that initially, he did not regard 
instrumental understanding as understanding at all. However, Skemp realised that many 
students as well as teachers do regard the possession and the ability to use the rules as 
understanding. Skemp acknowledged that in a restricted meaning of the word, these students 
do understand. However as we shall see, even though such students may be able to apply rules 
correctly, they may not be able to justify their arguments mathematically. 

 
The possession of instrumental understanding is evident in a number of students’ 

answer to the item on mathematical induction, which is Question 2 in the test instrument (see 
Figure 1). The procedural nature of students’ thinking is exemplified in the following 
interview excerpt with Ted who had done the problem correctly: 

I:  Can you explain to me the proof by mathematical induction? 
Ted:  First you must let p(n) be …write down the whole question. Then you prove p(1) 

true, then you assume p(k) true for something. Then you consider the  
p(k + 1), then must try and get ...say if I put (k + 1) into the right hand side. Then 
if it is true then all true. 

 
Such a response is not unique to Singapore students. Similar answers depicting the 

procedural nature of students’ thinking had been documented by Baker (1996) in his study on 
the difficulties faced by students in mathematical induction. It is not uncommon that students 
memorise rules and procedures without understanding them, some of whom incessantly 
master the skills and algorithms before even trying to gain an appreciation into the “why” 
behind those procedures. Skemp (1978) noted that some teachers may also make a reasoned 
choice to teach instrumentally as its rewards can be more immediate and more apparent. For 
some students, relational understanding does follow from these rules learned instrumentally, 
albeit possibly after some reflection, but for many, relational understanding may be practically 
out of reach (Linchevski & Sfard, 1991). When students merely follow formulas 
instrumentally, they may think that rote learning rather than creativity and discovery is the key 
to successful problem solving. Such students are unlikely to gain confidence in their ability to 
create mathematics and will resort to other means to justify their mathematical arguments 
(Harel & Sowder, 1998). This is evident in the continuation of the interview with Ted: 

I:  It (mathematical induction) is a proof. Why does this process work? 
Ted:  I don't know. 
I:  You don't know? 
Ted:  They tell me to do like that, so I do like that. This is the format for induction. 
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So in addition to Ted’s procedural description of mathematical induction, the interview also 
revealed his appeal to convictions outside of mathematical reasoning to justify his 
mathematical arguments. 
 
External Conviction Proof Schemes 

Ted’s justification of the proof by mathematical induction was based on “they tell me 
to do like that, so I do like that” and by appealing to the “format of induction”. Explanation 
and justification are key aspects of students’ mathematical activity in classrooms where 
mathematics is reasoning (Yackel & Hanna, 2003). However, in the absence of relational 
understanding, Ted resorted to justifying his arguments by appealing to a higher authority 
(authoritarian proof scheme) and judged the correctness of the proof based on the form of the 
argument (ritual proof scheme) (see Sowder & Harel, 1998). Such learning habits are the 
result of instrumental learning (Harel & Sowder, 1998). A dash of the authoritarian proof 
scheme is perhaps unavoidable and not completely detrimental. It, however, becomes a 
problem if the student relies totally on the authority without question. In its worst forms, the 
student either regards the justification of a mathematical argument as worthless and 
unnecessary, or is helpless without an authority at hand (Harel & Sowder, 1998). In such 
cases, it is not uncommon that whenever such students encounter difficulties, they ask for 
help without first making a serious effort to solve it on their own. 

 
The pitfall of the ritual proof scheme is that a student will mistake the form for the 

mathematics. The continuation of my interview with Ted illustrates how he was paralysed by 
the format of mathematical induction and was therefore not able to explain why another 
presentation (Figure 1) was not acceptable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  Inductive proof scheme 
 

I:  In that case, why don't you do this? (pointing to Figure 1) 
Ted:  Because this is not induction. 
I:  Why is this not induction? 
Ted:  Induction is that one (pointing to his own correctly presented solution). 
I:  Why is induction that one and not this (pointing to Figure 1)? 
Ted: Because we learned that one. 
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Inductive Proof Scheme 

The problem with instrumental understanding and its consequences is that in most 
cases, they cannot be detected through students’ answers on pen and paper, especially so 
when students provide textbook answers to routine problems. So while a page of correctly 
presented piece of work is a good indicator that a student has learned the procedure of solving 
the problem, it does not tell if the student has understood the mathematical concepts or if he 
has acquired the reasoning abilities to solve the problem. This means that the work submitted 
by students who have derived answers instrumentally will not be able to function as a reliable 
source of information for feedback. Ted is one such example. He had presented his proof by 
mathematical induction correctly, but when asked why he could not have presented it 
inductively as in Figure 1, Ted said that the inductively presented answer was wrong solely 
because that was not in the format of mathematical induction. 

I:  If you are the teacher, will you mark it correct or wrong? 
Ted:  Wrong. 
I:  Why? 
Ted:  I mean it is correct, but it is not induction. 

 
Another student Kim, whose presentation of the proof was largely correct, had the same 
perception as Ted and would accept a proof presented inductively as in Figure 1, but not in 
this context just because of the word "induction". 

Kim:  It (Figure 1) is not acceptable because the question wants you to prove it by 
induction. 

I:  So what if I just ask you to prove – take away the word induction? 
Kim:  Then it will be correct. 
 

When I asked John, who had stumbled in the induction step of his proof, if Figure 1 was a 
valid proof, he replied: 

John:  Hmm… It is logical. I think if I can think of it, I will also do this.  
 
Mathematical reasoning and everyday reasoning are essentially very different. 

Mathematics is a deductive science. The communication of mathematical arguments in 
mathematics is structured such that careful attention must be given to logical deduction. 
Reasoning in our everyday life does not entail the demands of the rigor required in a formal 
mathematical proof. As Polya (1941) put it, "rigorous, precise, properly so-called logical 
reasoning is found in its pure form only in mathematics" (p. 450). Although in this study, only 
two students presented their arguments inductively as in Figure 1, the interviews have 
uncovered others who would accept an inductive argument as a proof. These students possess 
the inductive proof scheme (Harel & Sowder, 1998). Such students have limited 
understanding of mathematical proofs and do not appreciate that a mathematical proof must 
be rigorous, general, complete and conclusive. 

 
In the case of Ted, Kim and John, the possession of the inductive proof scheme would 

have gone unnoticed apart from the interview. They are examples of students’ with sorely 
inadequate knowledge, but instrumental understanding had masked their incompetence and 
precluded necessary feedback. The assessment results obtained in such cases would just be an 
indicator of task completion; they provide little information on the students’ conceptual 
understanding. 
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The continuation of the interview with John revealed that he accepted the solution of 
Figure 1 as correct because of his prior experience with questions that required him to deduce 
the answer from patterns. 

I:  You also will do this (pointing to Figure 1)? 
John:  Why not? Because in secondary school, it is also like that. There is always .... 

this kind of question is always the last part. If you haven't learned how to do 
mathematical induction, then …..  this will be …ya…its very possible. 

I:  You think you can proof something by the recognition of patterns? 
John:  Ya….patterns …..because Maths is about patterns.…. 

 
In elementary mathematics, students are encouraged to explore, often without the need 

for rigour. An example would be the pattern explorations they do in secondary schools. At 
that level, once students are able to come out with the general mathematical statement from 
the observed patterns, the problem is considered solved. John did not appreciate that the 
demand in a formal proof is much greater than deriving a conjecture. To him, they were the 
same “because in secondary school, it is also like that” and “because Maths is about patterns”. 
The shift from elementary to more advanced mathematics is never a smooth transition, and 
assessment tasks may either aid or hinder the progress. 

 
Citing Dumas-Carre & Larcher (1987), Black and William (1998) remarked that there 

are various kinds of assessment tasks: those that are identical to the ones studied, those that 
are typical but not identical, and those that present a new problem requiring the construction 
of new approaches and the deployment of established knowledge in new ways. If assessments 
consistently consist of tasks which are identical to the ones taught, then students will develop 
a narrow conception of mathematics problems.  

 
 Harel and Sowder (1998) observed that the kinds of problems typically introduced to 

students in their first experience with mathematical induction have been cognitively 
inadequate. Ernest (1984) noted that the frequent use of examples involving finite series in 
mathematical induction has led to a common misconception concerning the form of the  
p(k+1) statement in the proof. In such cases, students simply assume that the p(k+1) statement 
equals “the expression given in the p(k) statement” + “something”, as in the solution in  
Figure 2. Students derive this habit from mindlessly doing many mathematical induction 

questions where they begin their proof of the p(k+1) statement with . 
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Figure 2  Common analogical reasoning errors in mathematical induction 
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 These are typical analogical reasoning errors where students simply apply a procedure 
from one context to a different context without giving much thought to the deeper structural 
properties of the mathematical problem in each context. 
 
Analogical Reasoning Errors 

Inference by analogy is one of the most essential and widely used problem solving 
strategies (Polya, 1957). Analogical reasoning entails understanding something new by 
comparing with something that is known (English, 1998). It is generally defined as the 
transfer of structural information from one system (called the source), to another system 
(called the target) through mapping relational correspondences between the two systems 
(English & Sharry, 1996). This transfer is achieved through identifying common problem 
structures between the two systems and applying known procedures from one to the other. 
This requires a relational understanding of both the source and target systems. Instrumental 
understanding, on the other hand, limits students’ transfer of what they have learned to a new 
environment. One of the errors novice problem solvers make is that they focus on the 
superficial features rather than on the underlying relational structural properties between the 
source and target problems (English, 1998). This is clear from the responses to Question 3 of 
the test instrument which consists of two items on inequalities (see Figure 4). The inequality 
items were constructed such that the answer to one of them had a singular value, not like 
typical ones where the answers are usually a range of values. The other inequality item is 
unlike familiar ones in which the given expression may be simplified into linear factors. 

 
The most glaring errors were inequality statements that did not make sense. Figure 3 

shows two students’ solutions where they drew number lines and formed inequalities which 
included complex numbers. 

 

 

 

 

Figure 3 Inequalities with complex numbers 
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Typically, such errors arise because students treat inequalities like equations and they 
draw inappropriate analogies between the solution structures of equations and inequalities 
(Tsamir, Almog & Tirosh, 1998). Equations and inequalities are structurally very different: 
“=” is an equivalence relation while “≤” is not.  There are many procedures which can be 
applied to equations but not to inequalities because in so doing the truth value of the 
inequality statement will not be preserved. However, students simply assume that the same 
solution procedure holds for both. Two examples are shown in Figure 4. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
   

Figure 4 Solving inequalities like equations 
 

These students had failed to recognize that the properties underlying valid equation-
solving transformations are not the same as those underlying valid inequality-solving 
transformations (Kieran, 2004). During the interview, Kim admitted that his errors originated 
from a general ignorance of the structural differences between equations and inequalities: 

Kim:  I was trying to treat the inequality like an equation…… which I know is not 
thoroughly correct. 

 
The treatment of inequalities like equations also highlighted an underlying problem: that in 
their manipulation of algebraic expression, students did not consider if the procedures 
preserve the truth value of the mathematical statements. Cortes and Pfaff (2000) noted that 
some students, when working with equations, do not provide any mathematical justification 
for transformations on the equations. Instrumental understanding acquired at earlier stages can 
influence the learning of new concepts introduced at a later stage. Such interference is also 
evident in Question 9 (see Figure 5) of the test instrument where students had to find the 
volume of the solid generated by a region enclosed between two curves. This item requires a 
student to recognise that unlike solids which are generated by area bounded by a curve and 
the x-axis, the solid generated from the context given has a hollow centre. In the study, 18.8% 
of the participants made the error of using  to find the volume. This accounted 

for almost half of the errors made in the sample. Students who produced this solution did not 
consider how the hollow centre of the resultant solid would have affected the mathematics. 
Figure 5 shows the question and an example of the error. 
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Figure 5 Analogical reasoning error 

 
Chen’s response in the interview shed some light on the reasoning behind the error.  

I:  What gave you that idea? Why did you think like that? 
Chen:  Because of the area. Because area you can minus away. 

 
Chen’s reply indicated that these students had erroneously linked the formula of 

finding the volume generated by the region bounded by the two curves to that of the area of a 
bounded region. Singapore students learn how to use integration to find the area of a bounded 
region in Additional Mathematics in secondary 4 (Grade 10) and proceed on to learn how to 
calculate the volume of a solid generated by rotating a bounded area about the x or y axis in 
Junior College. However, many students simply memorise   as a formula to 

use for finding area bounded by two curves and erroneously extend it to   

to find the volume generated by the area bounded. They do not realise that the former formula 
is derived from the property that . This demonstrates 

that common analogical reasoning errors occur because of discontinuities in the acquisition of 
mathematical knowledge. Assessment tasks which target at such discontinuities may be able 
to gather the necessary information to bridge the discontinuities. The exploration of students’ 
prior knowledge through their answers in new contexts improves learning because it helps 
students relate the new to the old and helps avoid superficial treatments of the new (Black & 
William, 1998). 
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Implication of Findings for Assessment 

The above discussion highlighted two reasoning lapses uncovered through the use of 
novel items: first, students had mistakenly accepted inductive strategies as valid mathematical 
proofs; second, students made analogical reasoning errors in their transfer of procedures from 
source systems to target systems. The students’ over-reliance on instrumental understanding 
had a large part to play in these reasoning lapses. Procedures that were understood 
instrumentally were erroneously applied from previously acquired knowledge into new 
environments. The lack of relational understanding presents a difficulty in gathering accurate 
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information about students’ learning. Reasoning lapses could be deceitfully masked by 
instrumental understanding making them difficult to elicit through familiar questions. Thus 
for teachers to be able to get evidence for appropriate follow up actions, traditional 
assessments may not be adequate. Instead, conscious effort must be made to construct items 
in the light of specific knowledge structures so that teachers may determine the progress of 
the students to help them overcome their discontinuities in learning. The construction of these 
items requires teachers to predict what students can learn as much as it requires them to have 
knowledge in what their students have already learned (Black & William, 1998). Such items 
could spark off the assessment cycle of elicitation and make possible assessment for learning 
in the classroom. 
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